один из основоположников современной теории вероятностей, им получены основополагающие результаты в топологии, геометрии, математической логике, классической механике, теории турбулентности, теории сложности алгоритмов, теории информации, теории функций, теории тригонометрических рядов, теории меры, теории приближения функций, теории множеств, теории дифференциальных уравнений, теории динамических систем, функциональном анализе и в ряде других областей математики и её приложений.
Наиболее важные исследования относятся к теории вращения твёрдого тела. Ковалевская открыла третий классический случай разрешимости задачи о вращении твёрдого тела вокруг неподвижной точки. Этим продвинула вперёд решение задачи, начатое Леонардом Эйлером и Ж. Л. Лагранжем. Доказала существование аналитического (голоморфного) решения задачи Коши для систем дифференциальных уравнений с частными производными, исследовала задачу Лапласа о равновесии кольца Сатурна, получила второе приближение.
Большая заслуга В. А. Стеклова в создании теории замкнутости ортогональных систем функций. Ему принадлежат идеи сглаживания функций. Стеклов посвящает много работ вопросам разложимости по собственным функциям задачи Штурма — Лиувилля, при этом совершенствует и развивает метод Шварца — Пуанкаре.